UTILIZATION LAW & LITTLE'S LAW

Software Performance Engineering

Our analysis thus far

- We define metrics for each system to measure performance
- We use the exponential distribution
 - To analyze inter-arrival times in a Markovian stochastic system
 - For a single random variable, e.g. "customers arriving"
- …but real systems have multiple random variables interacting!
 - Servers behave randomly
 - Customers behave randomly

Arrival Rate & Service Rate

- Arrival rate: λ
 - The rate at which jobs ("customers") are entering the system
 - Can be constant, or a parameter to exponential distribution
 - e.g. "We get 60 customers per hour"
- Mean inter-arrival time: $1/\lambda$
 - e.g. "We get a new customer every minute"
- Service rate: μ
 - The rate at which our server handles jobs
 - Can be constant, or a parameter to exponential distribution
 - e.g. "We can serve 120 customers per hour"
- Mean service time: 1/ µ or S
 - e.g. "We take 2 minutes for every customer"

Traffic Intensity & Utilization

• Traffic intensity ρ

- $\rho = \lambda/\mu = \lambda S$
- % measure of load on the overall system
- e.g. "Traffic intensity of 50%"
- If $\rho \ge 1$, the system cannot keep up with demand (a lot of our math breaks down in this situation)
- Utilization U
 - The proportion of time the server is busy
 - Maxes out at 100%, or saturated
 - If jobs are never lost, $U = \rho$
 - If jobs can be lost, $U \leq \rho$

Throughput & Queue Length

Throughput: X

- The rate at which the entire system processes jobs
- (Becomes more complex in multi-service systems)
- If jobs can be lost, $X \le \lambda$
- Queue Length: n
 - The number of jobs present in the system
 - The number of jobs present at a given server

Response Time & Waiting Time

- Response time: \overline{R}
 - The total period of time from a job's arrival to its final processing
- Waiting time
 - The time that a job must wait in the queue until it is served

Queuing Discipline

- FCFS: First Come First Serve
- LCFS: Last Come First Serve
 - e.g. a stack
- LCFSPR: Last Come First Served Preemptive Resume
 - The most recently arriving job preempts the job
 - That job is served to completion, unless preempted itself
- Time Slicing or Round Robin
 - Each job is given a fixed period of time before it is interrupted and switches to another job in the queue

Utilization Law

- These laws are helpful for:
 - Determining if your measurements are sane
 - Examining how each your metrics relate to each other
- Utilization Law: $U = XS = X/\mu$
 - Utilization is the product of throughput and mean service time
 - This is true *regardless* of your queuing discipline
 - e.g. Coffee Shop
 S = 2 m/c, "e.g. "We take 2 minutes for every customer"
 X = 1/4 c/m, "We get 1 customers every 4 minutes"
 U = 50%

More Utilization Law eg's

- e.g. Processors
 - Mean service time for a job is 10ms
 - What is the maximum expected throughput if we want our maximum utilization at 80%?
 - X = U/S = 0.8/(10 ms/j) = .08 j/ms = 8 jobs/sec

Little's Law

- Mean Queue length \bar{n} is the product of Throughput X and Mean Response Time R
- $\bullet \quad \bar{n} = X\bar{R}$
- e.g. Rollercoaster
 - On average it takes 15 minutes from getting to the back of the line to riding to exit.
 - The rollercoaster handles 20 riders/hour (1 rider/3 minutes)
 - Thus, the mean queue length is: $\bar{n} = X\bar{R} = \frac{15}{3} = 5$ riders
- e.g. Rollercoaster should we ride?
 - The rollercoaster handles 20 riders/hour (1 rider/3 minutes)
 - Queue length is currently 30
 - Current line is 30 people. (Assume that is average)
 - How long will we wait?

$$- \quad \bar{R} = \frac{n}{x} = \frac{30}{0.333} = 90 \text{ minutes}$$

Applied to Single Server Systems

- M/M/1 queues
 - Customer arrival rate is Markovian
 - Service Rate is Markovian
 - 1 Server
 - No maximum capacity, infinite customers
- $X = \lambda$ if $\rho \le 1$
 - With a single server, throughput of the entire system is basically just customer arrival rate
- $\blacksquare \quad \bar{R} = \frac{\bar{n}}{\lambda}$
 - Application of Little's law with the above assumption

Queue Length of M/M/1

 $\bullet \quad \bar{n} = \frac{\rho}{1-\rho}$

eq 3.8 from the book, we'll skip the derivation

- e.g. Web app
 - Customers arrive 1 per second, $\lambda = 1 \text{ c/s}$
 - Webapp processes them at 8 per second, $\mu = 8$ c/s

- Traffic intensity:
$$\rho = \frac{1}{8} = 12.5\%$$

- Mean queue length: $\bar{n} = \frac{0.125}{0.875} = 0.142$
- e.g. Busy Web app
 - Customers arrive 6 per second, λ =6 c/s
 - Webapp processes them at 8 per second, $\mu = 8$ c/s
 - Traffic intensity: $\rho = \frac{6}{8} = 75\%$
 - Mean queue length: $\bar{n} = \frac{0.75}{0.25} = 3$
 - So our λ increased by 6x, but our \overline{n} increased by 21x!!

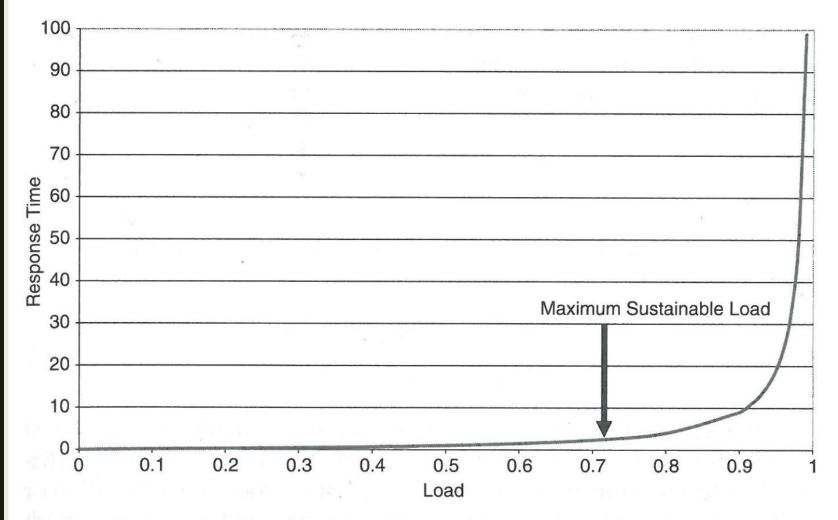


Figure 3.8 Mean response time of an M/M/1 queue

- For this chart, assume that $\lambda = 1$ so that $\lambda = \overline{R}$
- Load is ρ , or U if jobs are never lost